Computing J-ideals of a matrix over a principal ideal domain
نویسندگان
چکیده
منابع مشابه
Finitely-generated modules over a principal ideal domain
Let R be a commutative ring throughout. Usually R will be an integral domain and even a principal ideal domain, but these assumptions will be made explicitly. Since R is commutative, there is no distinction between left, right and 2-sided ideals. In particular, for every ideal I we have a quotient ring R/I. F always denotes a field. Our goal is to prove the classification theorem for finitely-g...
متن کاملTowards Computing a Gröbner Basis of a Polynomial Ideal over a Field by Using Matrix Triangularization
We give first results of our investigation of the connection between Gröbner bases computation and Gaussian elimination. We show that for every input set F of polynomials a matrix of shifts of those polynomials exists such that by triangularizing this matrix we obtain a Gröbner basis of F .
متن کامل(C, A)-Invariance of Modules over Principal Ideal Domains
For discrete-time linear systems over a principal ideal domain three types of (C;A)-invariance can be distinguished. Connections between these notions are investigated. For pure submodules necessary and su cient conditions for dynamic (C;A)-injection invariance are given. Su cient conditions are obtained in the general case. Mathematical Subject Classi cations (1991): 93B07, 93B99, 15A33, 13C99
متن کاملClassification Problems for Shifts on Modules over a Principal Ideal Domain
In this paper we study symbolic dynamics over alphabets which are modules over a principal ideal domain, considering topological shifts which are also submodules. Our main result is the classification, up to algebraic and topological conjugacy, of the torsion-free, transitive, finite memory shifts.
متن کاملMDS codes over finite principal ideal rings
The purpose of this paper is to study codes over finite principal ideal rings. To do this, we begin with codes over finite chain rings as a natural generalization of codes over Galois rings GR(pe, l) (including Zpe). We give sufficient conditions on the existence of MDS codes over finite chain rings and on the existence of self-dual codes over finite chain rings. We also construct MDS self-dual...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2017
ISSN: 0024-3795
DOI: 10.1016/j.laa.2017.03.028