Computing J-ideals of a matrix over a principal ideal domain

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finitely-generated modules over a principal ideal domain

Let R be a commutative ring throughout. Usually R will be an integral domain and even a principal ideal domain, but these assumptions will be made explicitly. Since R is commutative, there is no distinction between left, right and 2-sided ideals. In particular, for every ideal I we have a quotient ring R/I. F always denotes a field. Our goal is to prove the classification theorem for finitely-g...

متن کامل

Towards Computing a Gröbner Basis of a Polynomial Ideal over a Field by Using Matrix Triangularization

We give first results of our investigation of the connection between Gröbner bases computation and Gaussian elimination. We show that for every input set F of polynomials a matrix of shifts of those polynomials exists such that by triangularizing this matrix we obtain a Gröbner basis of F .

متن کامل

(C, A)-Invariance of Modules over Principal Ideal Domains

For discrete-time linear systems over a principal ideal domain three types of (C;A)-invariance can be distinguished. Connections between these notions are investigated. For pure submodules necessary and su cient conditions for dynamic (C;A)-injection invariance are given. Su cient conditions are obtained in the general case. Mathematical Subject Classi cations (1991): 93B07, 93B99, 15A33, 13C99

متن کامل

Classification Problems for Shifts on Modules over a Principal Ideal Domain

In this paper we study symbolic dynamics over alphabets which are modules over a principal ideal domain, considering topological shifts which are also submodules. Our main result is the classification, up to algebraic and topological conjugacy, of the torsion-free, transitive, finite memory shifts.

متن کامل

MDS codes over finite principal ideal rings

The purpose of this paper is to study codes over finite principal ideal rings. To do this, we begin with codes over finite chain rings as a natural generalization of codes over Galois rings GR(pe, l) (including Zpe). We give sufficient conditions on the existence of MDS codes over finite chain rings and on the existence of self-dual codes over finite chain rings. We also construct MDS self-dual...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2017

ISSN: 0024-3795

DOI: 10.1016/j.laa.2017.03.028